Friday, June 17, 2011

BUILD YOUR MUSCLES RATHER THAN TEAR THEM DOWN

BUILD YOUR MUSCLES RATHER THAN TEAR THEM DOWN

By Ori Hofmekler

One of the most common fitness approaches has been failing miserably. Most people typically attempt to get "less fat" or "less unfit" rather than lean and fit. Most aim at getting "less unhealthy" rather than healthy. Perhaps you too have become accustomed to accept failure as the norm?

Our society is now getting fatter and sicker than ever in spite of the ever growing number of dieters and people who exercise regularly. Something is very wrong with our physical state and most of us aren't even aware of it.

Human fitness is not a random collection of exercises and it isn't about eating less junk food or popping megadoses of vitamins. Your fitness is created and maintained by a well-defined system. It is rooted in your biology and it's programmed in your genes. Human fitness is based on specific rules, and you need to know how to follow these rules.

Please understand that you possess genes that preserve and develop your muscles, and incredibly, these same genes also extend your life. Your body has an inherent muscle building mechanism that can be activated at any age. And there is no need to force your body to do anything that it isn't programmed for.

When passive, sedentary or "moderately" challenged, your body goes into waste. And the consequences include muscle degradation, excessive fat gain, chronic disease and a shortened life span.

Aging for instance, is a tissue wasting process.

Can you block this process?

You're certainly equipped with the means to counteract aging, but modern lifestyle and fitness systems are not designed for that.

Nowadays, we don't need to hunt, fight or flee to survive, and hardly do we need to endure hunger. Virtually everything your early ancestors had to struggle for is now readily accessible. But this is the core of the problem.

We have been shifting away from our species' original program, and away from the necessity to actively survive. Typically our bodies are inadequately challenged. And the very stressors that had made our species thrive in the first place, don't apply to us today. These days, humans live "safely" like farm animals. And most of us are overfed and overweight.

So, What's the Solution?

To reclaim your fitness you need to know how to trigger the biological mechanism that preserves and builds your muscles.

Muscle retention is the most critical element of human fitness. Skeletal muscle plays key biological roles in keeping you strong, functional and healthy. Besides force production for physical movements, the muscle participates in the regulation of glucose and lipid metabolism and insulin sensitivity. And it protects you against obesity, diabetes and cardiovascular disease.

Muscle wasting such as due to lack of adequate exercise, disease or aging, leads to the loss of physical capacity, loss of physical shape and increased risk for chronic disease.

New developments in the field of human muscle biology have begun to unravel cellular mechanisms that regulate muscle protein synthesis and breakdown. The key muscle building mechanism in all mammals is a complex protein, part of the insulin pathway, called mTOR (mammalian target of rapamycin).

When activated, mTOR signals your muscle to increase protein synthesis. And when it's inhibited, your muscle protein synthesis shuts down, and protein breakdown increases. Note that it's the ratio of protein synthesis/protein breakdown that dictates whether you build or waste muscle.

There are three primary activators of mTOR in your muscle:

· Growth factors and insulin

· Amino acids

· Mechano-overload (such as with weight lifting)

During exercise your mTOR is totally inhibited, but it's reactivated right after exercise and further enhanced by amino acids and insulin. With proper nutrition after exercise, mTOR boosts your muscle protein synthesis to a level that exceeds the rate of protein breakdown, leading to a positive protein balance in the muscle and a net gain of muscle mass.

Researchers have been finding that the main physical trigger for your mTOR is mechano-overload.

Aerobic training affects mainly your mitochondria (the cellular energy facility) but hardly affects your myofibrils. And even though aerobics yields some cardiovascular benefits, it fails to build muscle mass. And quite often, chronic prolonged aerobics drills can actually lead to loss of muscle size and diminished strength.

So is aerobics bad for you?

Researchers in the area of muscle biology and aging have been finding growing evidence that prolonged aerobics training increase the risk of oxidative damage in the muscle. This type of training causes overwhelming accumulation of free radicals in your muscle, which eventually increase the risk of oxidative damage in your tissues (myofibrils and mitochondria). And this risk of oxidative damage becomes increasingly higher as you get older.

On the other hand, intense exercise protocols which are inherently short, have shown to lower this risk. The short intense exercise protocol gives the muscle the time it needs to recuperate and counteract oxidative stress without depleting its antioxidant pool. And again, short intense exercise yield the right impact needed to trigger your mTOR and increase muscle mass.

The mechano-overload impact of intense exercise works directly on your fast muscle fibers, the type IIB and the type IIA. It's the fast muscle fibers that enable you to be strong and fast, and they have the largest capacity to generate force and gain size. You need them when you climb stairs, carry heavy grocery bags, chop wood or move furniture. And if you lose that physical capacity, you lose your ability to live independently.

The main nutritional triggers for mTOR are essential amino acids and particularly the amino acid leucine. Besides the stimulation of muscle protein synthesis, leucine has also shown the capacity to modulate insulin and blood sugar. Unlike other amino acids, which serve mainly as building blocks for muscle protein, leucine also signals your muscle to increase protein synthesis. Incredibly, leucine has shown to stimulate your muscle protein synthesis, even during times of food restriction or after prolonged physical hardship. It is the sheer increase in circulating leucine concentration which triggers the mTOR.

But beware that only FOOD BASED leucine can benefit your muscles without side effects. Using leucine as a free form amino acid can be highly counterproductive. Based on nitrogen-balance measurements, the requirement for leucine to maintain body protein is 1-3 grams daily. And to optimize its anabolic pathway, it has been estimated that leucine requirement should be about 8g - 16g daily.

There is growing evidence that the human body has not evolved to do well on a high carbohydrate diet. And as we age, we tend to further lose our tolerance to carbohydrate food and particularly to the glycemic load. Recent studies reveal that the addition of simple carbohydrates to protein supplement negated the anabolic impact of the protein, and blunted muscle protein synthesis in a group of healthy people over 60. These are the facts and we can't afford overlooking them.

One of the major problems with today's fitness is the ignorance towards muscle fueling. We have been shifting away from the primal low glycemic fat/protein fuel into the high glycemic carbohydrate fuel and again, we pay the consequences with ever growing rates of diabetes, obesity and related disorders. To retain and improve your physical shape, you must shift back to the low glycemic fuel foods you were originally programmed for. And by all means, you should minimize the consumption of high glycemic foods and avoid all sport nutrition and diet products (bars and powders) that are high in sugar or refined carbs.

The Physical Protocol

Train intensely in short intervals. The short intense exercise intervals protocol has shown to improve body composition (build muscle, burn fat) more than the prolonged moderate exercise and aerobics. It has also shown to help counteract muscle aging by retaining fast muscle fibers and increasing the capacity to perform intense, physical tasks.

Avoid long aerobic cardio sessions.

· Incorporate strength and speed exercises with intense push and pull drills to maximize the mechano-overload impact on the muscle. Keep increasing your exercise intensity (weight load, speed and complexity) as you progress to keep your muscles adequately challenged.

· Work your whole body rather than body parts. Isolation exercise have a limited and often limiting effect on your progress.

· Incorporate minimum rest between intervals. This will force your body to improve its durability and strength at the same time.

Remember to keep challenging your body. To do that, rotate your exercise routine; change the order of your exercises and add new elements to your drills.

Incorporate drills that mimic fight or flight activities, such as punches, kicks and sprints. Like other species, we're inherently programmed to improve our physical capacity and resiliency to stress by unlocking this primitive survival apparatus within us.

Avoid moderate exercise. Moderation is fatal to muscular development.

The Nutritional Protocol

Follow a high protein, low glycemic diet. Keep a high ratio of protein/carbohydrates to improve body composition.

Here are a few other key points:

· Increase your intake of leucine rich foods such as high quality whey protein, raw cheese and organic, pasture-raised eggs.

· Increase the gap between meals to potentiate the anabolic effect of each meal. Remember, fasting stimulates a substantial peak in muscle protein synthesis when feeding is resumed.

· Feed your muscle with quality whey protein after exercise. Make sure the whey protein is derived from grass fed cows and is cold processed. Note that whey protein is the fastest to assimilate among all protein foods. Its anabolic impact after exercise is unmatched. Whey protein is also ideal for muscle fueling before exercise. It has the highest content of leucine and BCAA among all foods.

For best results, incorporate at least two recovery meals after exercise / 20g-30g protein per meal. 20g is about the threshold amount of protein needed to grant maximum utilization efficiency without wasting nitrogen.

Keep 1-3 hours gap between meals (depends on meal size).

Make all your muscle meals low glycemic. Avoid protein bars and powders made with added sugar. Note that mixing whey protein with low glycemic fruits such as berries is ok. This will not cause a substantial increase in the glycemic load of your meal.

Ideally you should have your whey (recovery meal) about 30 min after training. This is about the time when your muscle is most recipient to assimilating nutrients and protein. Feeding after exercise comes with another bonus: increased metabolic adaptation efficiency to deposit protein in the muscle and burn fat.

A recent article in the Journal of Physiology (Nov 2010) indicated that exercising while fasting and then eating a meal, promotes weight loss and muscle gain. That's in comparison with eating the same meal before exercise which had shown to cause fat gain and less protein deposit in your muscle. The researchers reported that the increased muscle protein synthesis in the muscle as observed in people who exercise while fasting and then ate a meal, has to do with increased insulin sensitivity and the activation of the muscle mTOR (the mechanism that builds muscle).

Simply put: Eating after training helps you lean down while gaining muscle mass. Which is unlike eating before training.

Additionally:

· Increase your intake of antioxidants from fruits and vegetables to support your muscle antioxidant defenses and allow recuperation and buildup.

· Stay away from any product made with added fructose. Fructose is the worst fuel for your muscles.

· Start your morning with a whey protein meal to cover your minimum leucine requirement. This will allow all additional protein meals to become increasingly anabolic (by releasing extra leucine for anabolic purposes).

· Use whey meals as a primary source of protein during the day to grant maximum protein/leucine loading efficiency with minimum digestive stress.

· Have your slow assimilating proteins (eggs, cheese, fish or meat) at night to grant a steady release of leucine and a long lasting anabolic impact during the sleeping hours.

· One way to spare leucine for anabolic purposes is by adding coconuts' MCT (medium chain triglycerides) to a whey protein meal. MCT has shown the capacity to swiftly convert to energy without spiking insulin and without the need for bile acid digestion. MCT can help shift leucine's pathway from fueling into muscle building.

· Keep your diet clean from chemicals, pesticides and preservatives to minimize the metabolic stress on your body. Accumulated metabolic stress and toxicity present major obstacles to muscle recuperation and buildup.

Final Note

Life isn't just about looking hard and feeling strong. And often you get too busy to pay attention to how you eat or exercise. Nevertheless, with the right knowledge and practice, you can become increasingly efficient in restoring and improving your physical shape even when your available time is scarce.

The protocols suggested here can fit any lifestyle. Even 10 minutes of intense exercise can still yield positive results while you're on a super busy schedule. And you can easily pre-pack whey protein in your bag or case and bring it with you anywhere you go. Life requires you to act.

The choice is now in your hands.

Leucine Content in food / per 100g

Whey Protein Concentrate

8.0g

Raw Cheddar Cheese

3.6g

Lean Beef

1.7g

Salmon

1.6g

Almonds

1.5g

Chicken

1.4g

Chick Peas

1.4g

Raw Eggs

1.0g

Egg Yolk

1.4g

Sheep Milk

0.6g

Pork

0.4g

Cow Milk

0.3g



http://www.controlledfatiguetraining.net/home/

No comments: